个人简介
贾建华:男,工学博士,教授,博士生导师。现任景德镇陶瓷大学信息工程学院院长。1979年11月生,2000年7月本科毕业于南昌大学机电工程学院机械工程及自动化专业,获工学学士学位。同年入伍,任空军试验训练基地助理工程师,2004年8月-2007年2月于西安电子科技大学电路与系统专业攻读硕士学位,师从焦李成教授。2007年3月转为直博生,2010年12月获工学博士学位。2010年1月起任景德镇陶瓷大学信息工程学院讲师,2013年12月任副教授,2017年1月任信息工程学院副院长,2022年9月任院长,2019年12月任教授。2014年4月至2015年4月,公派英国伯明翰大学计算机学院作访问学者。2018年10月至11月公派赴加拿大女王大学加拿大癌症试验生物统计组访问交流;2019年8月至9月公派赴黑山共和国下戈里察大学数学系生物信息学研究组访问交流。长期从事机器学习、数据挖掘、模式识别,生物信息学等方面的研究工作。以第一作者发表SCI论文20余篇,其中2015年度发表在《Journal of Theoretical Biology》上的论文入选2015年度全国百篇最具国际影响力论文且入选ESI前1%高被引论文,2016年度发表在《Molecules》上的论文入选2016年度ESI Top Papers,2016年度发表在《Journal of Theoretical Biology》上的论文入选ESI前1%高被引论文,且被评为ESI fast-breaking paper,2021、2022年连续两年入选爱思维尔中国高被引学者榜单(统计学领域),2021年获江西省自然科学二等奖(排名第二)。主要工作集中在机器学习、模式识别和生物信息学领域。
教育经历
1996.9-2000.7,南昌大学,机电工程学院,本科/学士
2004.8-2007.2,西安电子科技大学,智能感知和图像理解教育部重点实验室,研究生/硕士 导师:焦李成教授
2007.3-2010.12, 西安电子科技大学,智能感知和图像理解教育部重点实验室,研究生/博士 导师:焦李成教授
研究工作经历
2000.7-2004.7,空军试验训练基地,一区第三试验站,助理工程师
2004.8-2007.2,西安电子科技大学,智能感知和图像理解教育部重点实验室,硕士研究生
2007.3 -2010.12,西安电子科技大学,智能感知和图像理解教育部重点实验室,博士研究生
2010.1- 景德镇陶瓷学院,信息工程学院,教师
2014.4 – 2015.4 英国伯明翰大学, 计算机学院,访问学者
2018.10 -2018.11 加拿大女王大学 加拿大癌症试验生物统计组 访问学者
2019.8 -2019.9 黑山共和国下戈里察大学 数学系生物信息学研究组 访问学者
主要学术成果
1.主持的科研项目
国家级项目
(1)国家自然科学基金项目:《非平衡分类模式下的蛋白质翻译后修饰位点预测方法研究》(项目批准号:61761023)结题
(2)国家自然科学基金项目:《集成学习框架下的蛋白质-蛋白质结合位点预测方法研究》(项目批准号:61261027)结题
省级项目
(1)江西省自然科学基金项目:《基于代价敏感和集成学习的蛋白质翻译后修饰位点预测方法研究》(项目批准号:20202BABL202004)在研
(2)江西省自然科学基金项目:《基于序列信息的蛋白质功能位点预测方法研究》(项目批准号:20161BAB202047)结题
(3)江西省自然科学基金项目:《机器学习中的选择性谱聚类集成学习算法及其在蛋白质分类和结构中的预测研究》(项目批准号:20122BAB211033)结题
市厅级项目
(1)江西省教育厅科研项目:《非平衡分类方法及其在蛋白质翻译后修饰位点预测中的应用研究》(项目批准号:GJJ190695)结题
(2)江西省教育厅科研项目:《集成学习框架下的蛋白质翻译后修饰位点预测方法研究》(项目批准号:GJJ160908)结题
(3)江西省教育厅科研项目:《基于集成学习的非平衡数据分类模式下的蛋白质结合位点预测方法研究》(项目批准号:GJJ14640)结题
(4)江西省教育厅科研项目:《聚类集成中的选择性策略及其应用研究》(项目批准号:GJJ12513)结题
2.发表论文
· 贾建华著 《谱聚类集成算法研究》天津大学出版社,2011年8月,独著。
· Rufeng Lei,Jianhua Jia, Lulu Qin, et.al.iPro2L_DG:Hybrid network based on improved DenseNet and global attention mechanism for identifying promoter sequences. Heliyon, 2024, 10:e27364.
· Jianhua Jia, Rufeng Lei, Lulu Qin, et.al. i5mC-DCGA: An improved hybrid network framework based on the CBAM attention mechanism for identifying promoter 5mC sites. BMC genomics, 2024, 25:242.
· Jianhua Jia, Genqiang Wu, Meifang Li. iGly-IDN: Identifying Lysine Glycation Sites in Proteins Based on Improved DenseNet. Journal of Computational Biology. 2024,31(2):161-174.
· Jianhua Jia, Peinuo Lv, Xin Wei,et.al.SNO-DCA: A Model for Predicting S-Nitrosylation Sites Based on Densely Connected Convolutional Networks And Attention Mechanism. Heliyon.2024,10(1):e23187.
· Jianhua Jia, Yu Deng, Mengyue Yi,et.al.4mCPred-GSIMP: Predicting DNA N4-methylcytosine Sites in Mouse Genome with Multi-Scale Adaptive Features Extraction and Fusion. Mathematical Biosciences and Engineering. 2024,21(1):253-271.
· Jianhua Jia, Xiaojing Cao, Rufeng Lei.DLC-ac4C: A Prediction Model for N4-acetylcytidine Sites in Human mRNA Based on DenseNet and Bidirectional LSTM Methods. Current Genomics. 2023, 24(3):171-186.
· Jianhua Jia, Lulu Qin, Rufeng Lei. im5C-DSCGA: A hybrid framework based on improved DenseNet and attention mechanism for identifying 5-methylcytosine sites in human RNA. Frontiers in Bioscience-Landmark. 2023, 28(12):346.
· Jianhua Jia, Zhangying Wei, Mingwei Sun. EMDL-m6Am: identifying n6,2’-O-dimethyladenosine sites based on stacking ensemble deep learning. BMC Bioinformatics. 2023, 24:397.
· Jianhua Jia, Zhangying Wei, Xiaojing Cao. EMDL-ac4C: identifying n4-acetylcytidine based on ensemble two-branch residual connection DenseNet and attention. Frontiers in Genetics. 2023, 14:1232038.
· 贾建华,陈天,吴跟强等. m6AmTwins:基于深度学习和Twins网络的m6Am位点预测.中国生物化学与分子生物学报.2023,39(6):889-895.
· Jianhua Jia, Lulu Qin, Rufeng Lei. DGA-5mC: a 5-Methylcytosine site prediction model based on the improved DenseNet and bidirectional GRU method. Mathematical Biosciences and Engineering. 2023, 20(6): 9759–9780.
· Jianhua Jia, Rufeng Lei, Lulu Qin, et.al. iEnhancer-DCSV: Predicting enhancers and their strength based on DenseNet and improved convolutional block attention module. Frontiers in Genetics. 2023, 14. DOI:10.3389/fgene.2023.1132018.
· Jianhua Jia, Mingwei Sun, Genqiang Wu, et.al. DeepDN_iGlu: prediction of lysine glutarylation sites based on attention residual learning method and DenseNet. Mathematical Biosciences and Engineering.2023.20(2):2815-2830.
· Jianhua Jia,Genqiang Wu, Meifang Li,et.al. pSuc-EDBAM: Predicting lysine succinylation sites in proteins based on ensemble dense blocks and an attention module. BMC Bioinformatics.2022.10(23):450.
· Jianhua Jia, Genqiang Wu, Wangren Qiu. pSuc-FFSEA: Predicting Lysine Succinylation Sites in Proteins Based on Feature Fusion and Stacking Ensemble Algorithm. Frontiers in Cell and Developmental Biology. 2022,10(5):894874.
· Jianhua Jia, Yanxia Shen, Wangren Qiu. Identifying lysine succinylation sites in proteins by broad learning system and optimizing imbalanced training dataset via randomly labeling samples. Wuhan University of Natural Science. 2021,26(1):081-088.
· 贾建华,魏欣. iSulf_wide-PseAAC:基于集成支持向量机的蛋白质S-亚磺酰化预测方法.中国生物化学与分子生物学报.2021,37(6):822-829.
· Jianhua Jia, Xiaoyan Li,Wangren Qiu,et.al.iPPI-PseAAC(CGR):identify protein-protein interactions by incorporating chaos game representation into PseAAC.Journal of Theoretical Biology,2019,1(460):195-203.
· Jianhua Jia, Liuxia Zhang, Zi, Liu, et.al. pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016,32(20): 3133-3141. doi:10.1093/bioinformatics/btw387.(SCI indexed, IF:5.766)
· Jianhua Jia, Zi Liu, Xuan Xiao.et. al. iCar-PseCp: identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016,7(23):34558-34570.doi:10.18632/oncotarget.9148.(SCI:000377752100079, IF:5.008).
· Jianhua Jia, Zi Liu, Xuan Xiao.et. al. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. Journal of Theoretical Biology.2016,394(4):223-230.doi:10.1016/j.jtbi.2016.01.020. (SCI:000379888800020, IF:2.049). (入选ESI前1%高被引论文,入选ESI fast-breaking paper).
· Jianhua Jia, Zi Liu, Xuan Xiao. et. al. iPPBS-Opt: A sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets. Molecules.2016, 21(1), 95. doi:10.3390/molecules21010095.(SCI: 000369486800019, IF:2.465).(入选ESI top papers).
· Jianhua Jia, Zi Liu, Xuan Xiao. et.al. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Analytical Biochemistry.2016, 497(3):48-56. doi:10.1016/j.ab.2015.12.009. (SCI indexed:000370909900008, IF:2.243).
· Jianhua Jia, Zi Liu, Xuan Xiao. et.al. iPPI-Esml:An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical propertiers and wavelet transform into PseAAC. Journal of Theoretical Biology. 2015, 21(337):47-56. (SCI: 000355241600005. IF:2.049). (入选2015年中国百篇最具国际影响力的论文,ESI前1%高被引论文)
· Jianhua Jia. Zi Liu, Xiang Chen. et.al. Prediction of Protein-Protein Interactions using Chaos Game Representation and wavelet transform via random forests. Genetics and Molecular Research. 2015,14(4):11791-11805.doi: 10.4238/2015.October.2.13. (SCI indexed:000365922800013. IF: 0.764)
· Jianhua Jia, Xuan Xiao,Bingxiang Liu. Prediction of Protein-Protein Interactions with Physicochemical Descriptors and Wavelet Transform via Random Forests. Journal of Laboratory Automation(JALA). 2016, 21(3): 368-377. (SCI: 000377095200003. IF:1.297)
· Jianhua Jia, Zi Liu, Xuan Xiao. et.al. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. Journal of Biomolecular Structure & Dynamics. 2016, 34(9):1946-1961.doi: 10.1080/07391102.2015.1095116. (SCI indexed. IF:2.300).
· Jianhua Jia, Xuan Xiao, Bingxiang Liu, et.al. Bagging-based Spectral Clustering Ensemble Selection. Pattern Recognition Letters, 2011,32 (10):1456-1467. (SCI: 000292236500005, EI: 20112114009105. IF:1.586).
· Jianhua Jia, Licheng Jiao, Xia Chang. Soft Spectral Clustering Ensemble Applied to Image Segmentation. Frontiers of Computer Science in China, Springer Press, 2011,5(1):66-78 . (SCI:000292506200007, EI:20110913712647).
· 贾建华, 焦李成.空间一致性约束谱聚类算法用于图像分割. 红外与毫米波学报, 2010, 29 (1): 69-74.(SCI: 000275511100015, EI: 20101612868824)
· 贾建华, 焦李成, 黄文涛. 一种基于质心不变特性的仿射不变纹理特征提取算法. 电子学报, 2008, 36 (10): 1910-1915.(EI: 20084911765012)
· Jia Jianhua, Jiao Licheng, Chang Xia. Image segmentation via meanshift and loopy belief propagation. Wuhan University Journal of Natural Sciences, Springer Press, 2010, 15 (1): 043-050.
· 贾建华,焦李成. 图像分割的谱聚类集成算法. 西安交通大学学报. 2010, 44(6): 93-98. (EI: 20102713062996).
· Xu Yuanchun, Jia Jianhua. Adaptive spectral clustering ensemble selection via resampling and population-based incremental learning algorithm. Wuhan University Journal of Natural Sciences, Springer Press, 2011, 16 (3): 228-236.
· Jianhua Jia, Xuan Xiao, Binxiang Liu. Similarity-based spectral clustering ensemble selection. Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery(FSKD 2012).2012:1071-1074.